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For the fellow up studies we observe the repeated abservation of ouicome and prognostic factors over time. The
study of a subject over time may show changes from one outcome state to another and the histories of a group of
individuals may include the partially censored data or missing data. In such a case, an Expectation-Maximization
(EM) based parameter estimation is an intuitive approach. The transition from one state to another can be
categorized into three distinet types: progression, regression, and absorbing transition, In this paper a method is
exploited for estimating parameters of the model for reverse and repeated transition developed by Kay (1982) and
further extended by Islam and Singh (1992} and Singh et 4l (1999). For estimating parameters in the multistate
model, the EM method was uttlized. We apply the model to follow up data on Prostate Carcinomsa from the Pacific

Northwest Cancer Foundation/Northwest Hospitat,
1. Introduction

Survival analysis is a series of statistical approaches
for data analysis for which the variable of interest is
time until an event occurs. By time, we mean years,
months, weeks, or days from the beginning of follow-
up of an individual until an event occurs. By event,
we mean death, disease onset, patient relapse, or any
designated experience of interest that may happen to
an individual. In general, we can think of the time as
the sarvival time and the event as the failure time,
Survival analysis is distinguished from most other
analysis by the incorporation of censoring; that is,
some individuals® failure times are unknown due to
withdrawal or survival beyond the end time of the
study. Therefore, pairs of observed time and
indicator functions of failure are recorded in survival
data.

In typical survivai models the intermediats transitions
are not accounted for and only the aggregate time to
death is analyzed (Figure [A), For example, in a
survival model of two transition states and one
absorbing state, for State 2 patients the transition to
State 3 characterized by o, is usually ignored and so
are the prognostic factors affecting the intermediate
2— 3 transition. The death rate used in survival

—325-

models is a mixture of a,; and «,,, the mixture
probabilities being the conditional probabitities of
being in State ] or State 2 given that the patient
started in State T at time 0 and survived up to time ¢
(Andersen 1988}. We define a two-state model as
one where only two states are considered: the initial
state and the outcome state. The outcome state is
either death or a progressive stage, and no
intermediate transitions are considered. In contrast,
competing risks data arise from various censoring
mechanisms. A competing risk model may have more
than two absorbing states (Figure 1B), three
absorbing states, For example, when analyzing the
risk factors for the onset of stroke many of the
subjects may die from a heart attack prior to having a
stroke. Those individuals who die from a heart attack
are considered censored from the analysis due to this

competing tisk. Cn the other hand, a multistate model
is defined as one that incorperates all transitions into
a comprehensive model (Figure 10).

The nonparametric likelihcod methad for a multistate
stochastic process has been developed by Lagakos,
Somer, Zelen (1978). They assumed the underlying
semi-Markov model as an embedded Markov chain,
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Figure J.o Various disease stie modelling.

and transition times are independent and depend only
on adjoining states. A recharacterization of their
model is shown by Dinse and Larson (1986) that can
be used to express the nonparametric likelihood
estimators as a function of cause-specific hazard
estimators and the product-limit estimator. They have
net incorperated any covariates in the model. Voelkel
and Crowley (1984) used a semi-Markoy
specitication for forward going proportional hazards.
Aalen et, al. (1980) used Markov chain models for
analyzing interaction between life history events. Kay
(1982} showed an extension of the proportional
hazards model for several transient states. His model
also considered a hierarchial approach. The partial
likelihood factor for any transition in Kay's model is
identical to the partial likelihood for Cox’s (1972)
model except for the definition of the risk sets. Beck
(1979) developed a stochastic survival model which
incorporates two health states and several absorbing
states, Beck’s model does not consider reverse
transition among transient states directly.

This paper discusses a general k state multistate
model in which the exact transition times are not
observed. Of particular, relevance is the extension of
the relation between the multistate models and
survival analysis functions. Multistate models-
represent a generatization of parametric models in
survival analysis to the analysis of data concerning
multiple events. C

Multistate models are extended to include covariates
in the fransition intensities as in proportional hazard
madels. An important application of this modei is
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discussed and analyzed. Data from a longitudinal
study in prostate cancer from the Pacific Northwest
Cancer Poundation are used to find relations of
markers for prostate cancers and to describe the
natural course of prostate carcinoma.

2. Mulitistate Models

The muitistate models have become important tools
to describe and help understand the progression and
regression processes of important multistate
diseases, such as cancer, HIV infection, AIDS,
diabetes, and many other chronic diseases. These
models have been used and discussed by many
authors, including Andersen (1988), Gail (1981),
Kay (1982}, and Prentice and Williams (1981).
Especially, in the area of molecular biclogy,
research has been done on possible markers for the
transition from stable states to the accelerated phase,
the irreversible (absorbing) stale of a disease, or
hoth, thus, describing the natural course of diseases.

The muitistate modet is an extension of the basic
Cox regression model for right censored survivai
data (Cox 1972}, The muitistate model is the study
of the occurrence rate of the several types of events
that individuals may experience in their lifetimes.
{(Andersen & Borgan 1985; Clayion 1988; Keiding
et ab. 1989). The simplest form of this model is the
competing risks model (Andersen & Borgan, 1985,
Cox & Gakes, 1984, Prentice et al.; 1978) wherg
interest focuses not onty on death but also an the
causes of death.

There are different types of events that couid be
labeted, i = 1, ... [, and for which models are most
conveniently specified by means of the intensities
a,{t) of occurreace of the events of the different
types. Following the instantaneous failure rate
convention, this intensity has the interpretation that
a{t)d £ when 4 ¢ > O ts small is approximately the
conditional probability that individual j experiences
an event of type { in the interval fromstor+ 4 ¢
given that entire past up until just before time ¢ if
individual 1 is at risk for an event of type [ at that
time. A Cox type regression model can now be
considered by specifying the intensity as -

a(f) = am(r)exp(ﬁf%(f))



or

o, (1) = a.m(f)exp(BTZU(f))

where the covariates of interest may differ between
the different types of events. In fact, the model can
also be written by appropriately defining type
specific covariaies { Andersen & Borgan, 1985).
Large sample properties of multistate models have
been derived by authors, including Andersen and Gill
{1982) and Andersen and Borgan {1985). Some
examples of the use of multistate models in medical
reszarch have been given by Houggard and Madsen
{1985}, and Andersen {1988). Klein et. al. {1984)
used a three-state semi-Markov model in a study of
patients with chronic myelogenous leukemia, to
analyze the effect of elevated blood levels of
adenosine deaminase as & marker for transition from
stable disease to blast crisis and then to death.

3. Product Limit (PL) Based Multistate Model

The PL method for one transient state and one
absorbing state (Kaplan & Meier 1958; Meler 1977)
can be extended for multiple causes of decrement for
transitions from one transient state to several
absorbing states on the basis of simpler assumptions.
in the PL method censoring one transient state and
one absorbing state are considered. However, in
many practical situations, ong has to deal with more
than one absorbing state. For instance, in morbidity
stuclies, there are a number of causes of decrement.
A simple generalization of the PL method can be
shown for a single transient state and r absorbing
states where absorbing siates represent the causes of
decrement from a single healthy state or fransient
state. The k distinet failure times are ¢, <L, <. <4
in a sample of size 1. Let us define o/ as the hazard
mmponem at 'time I[- for cause of decrement ¢ (1= 1,
2. rmi=1, 4D, d/ as the number of failures
due to cause i dt time ¢, ¢; a5 the number of
observations censored durmU the time interval [z,

f01), #; as the number of individuals at risk at a time
just prmr 1ot Toobtain the fikelihood function we
have dssum{,d that (a) the failures occur at discrete
points 1n time, £, f = 1,2, . & tony individuals
exposed to the risk of hu}'uﬂ, due to causes of failure
wle =12, .. r;(bynoindividuat could have more
than one failure at £; and (c) censoring occurs at the
end of the interval [1, ¢,,,), such that the number of
individuals censored during the interval can be
subtracted from the poputation exposed to failure at
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time 7, to obtain the number of individuals exposed
to the risk of faijure at the subsequent point in time,
t;,;. In other words, at the end of the interval {z,,

L R

obtain a new set of exposed population members
who survived faitures ot censoring during the
interval. Hence, the probabilities for competing risk
at time £, can be expressed as:

o =PrT=0U=ulTet) el ucl

and the probability of no event at time 7, is

-
u
- Z“j)-
1=

Thus the exposed population at time ¢, ; is reduced
to

,

u

my o= - 2 d,
=1

Under these assumptions, the likelihood can be
obtained. Using the multinomial distribution (Islam
& Singh, 1992 ; Singh et ai., [999) we obiain the
maximum likelihood estimators

Using the relationship between £(¢) and competing
risk failure rates 1 (Kaibfleisch & Prentice 1980),
the estimate for the survival function, F(1), is
obtained as follows:

d it

E(n)= EHM - &) T A

<0 u= <t ou= {

Kay (1986) proposed a methodology to fit 2 general
k disease state Markov model in continuous time
with application to the analysis of cancer markers in
survival studies. Longini et al. (1989) used the
same model to describe the distribution of the
incubation period for AIDS patients. Kalbfeisch
and Lawless {1985} introduced a continuous-iime
Markov model to analyze panel data, and
Kaibfleisch et. al. (1983) proposed methods to



estimate the parameters of this medel from aggregate
data. Beck (1979) developed a stochastic survival
model that incorporates two transient states and
several absorbing states. However, Beck did not
extend this model for reverse transi-tions, Islam and
Singh {1992) extended Beck's model for transitions
as well as reverse transitions (Singh et al. 1999).

4. APPLICATION

We analyzed the data set collected from the Pacific
Northwest Cancer Foundation and Northwest
Hospital where 144 prostate carcinoma patients who
went through Todine-125 radio nuclides
{Brachytherapy) or Brachytherapy combined with
radiation therapy. These patients were followed up
yearty for 10 years after the treatment. The goal of
the analysis was to determine whether the use of
radiation therapy helped lower the risk or increased
the time to the absorhing state as well as from which
transient the patients have lower risk to the absorbing
state. Prostate specific antigen molecule (PSA) is
believed to leak from the prostatic ductal system into
the prostatic stroma and then into the blood stream
via capillaries and lymphatics. Unlike traditional
tumnor markers, PSA is not found in larger amounts
in tumor cells as compared with healthy tissue. In
fact, the opposite is true: malignant prostate tissue
actually produces less PSA than normal prostate
epithelial cells and benign prostatic adenomatous
tissue {(Papsidero et al. 1981; Qui et al. 1990). When
monitored serially after treatment, serum PSA is
considered the most universally verified and
validated method to determine disease-free survival
whether the treatment is by radiation or by surgery
(Kaplan et. al. 1993; Partin et al. 1993; Ravery 2t al,
1994; Ritter et al. 1992; Zagars 1992, Zagars &
Pollack 1995).

Of the 144 patients, 50 had the events of interest.
Events of interest were different [ailure types: bone
scan failure, biopsy failure, lost to follow up, and
PSA failure. PSA measurements in patients treated
with external beam irradiation were followed from 8
to 18 years. It has been postulated that the optimum
relapse-free value after radiation therapy should be ¢
to 1.0 ng/mi (Pisansky et al. 1993). A patient could
start in either State 0 (PSA <= 1.0 ng/mL.) or State |
(PSA> .0 ng/mL). State 0 and State 1 are the
transient states. Patients who had events of interest
are considered to be in State 2, that is, the absorbing
state. The distribution of the patients” transition
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states are given in Table |. Note that more than 30
% of the patients had reduced PSA level: 1 > §
transition,

Tabie 1.
Follow-Up Transition History for the Prostate
Cancer Study

Transition history N
0 4
0->1->0 9
L->0 74
1>0->1->0 8
T->0-»[22 i0
P>0->2 17
1->2 22

1 >0->12>20>1>0>1->02>2 |
0>1>0->1>0->1->0 |

Total 144

Note. The last two transition histories have been
deleted from this analysis due to unusual transitions
from the rest of the patients. N denotes the number
of patients for a given history.

Parameter Estimation for EM Multistate Model:
To find the initial estimates of the method

w - M

!

i T,.
given in Kay (198@){;@%15&(2:“%_2_
Using the above estimates, the IEl\/l-basn:d multistate
prostate carcinoma algorithm is given in Tabie 2,
The algorithm consists of eight steps to estimate the
o; parameters for the intensity matrix and the
calculation of the transition probability matrix using
the intensity matrix.

Table 2. : : o
EM Multistate Algorithm for the Prostate
Carcinoma Data

1. Find the initial value of the parameters ( &, )
i



Find £ (Ti:‘ §(‘1u.,xy.) . E-step
Find MLE of @ and update the value
of the @, : M-Step

Ll b3

4. Caiculate
Lk(aﬁ : Ti.f.,x,.f) where k=0, 1, ...
Compare L,, L,,, iterate Steps 2 to 4 until it
converges (0.0000( criterion)
6. Form transition matrix Q based on Steps 1 to 5
7. Find Eigenvalues and Eigenvectors of the Q
Matrix
8. Find probability matrix 2 based on Steps 6-7

LA

Note. EM denotes Expectation and Maximization,
MLE denotes Maximum Likelihood Estimator.

The EM part of the Table 2 converged after 50
iterations, and the estimates are shown in Tabie 3.

Note that the median survival time is around 10.64
years using the KM analysis. We find more valuable
msight of the data using the multistate analysis. The
transition intensities can be interpreted as the number
of transitions in a constant period of time. The
transition rate from State | to State 0 is abouat 40
times more likely than from State 0 to State |,
Relatively speaking, having entered State 0 there is a
smaller chance of returning to State 1. Also, the
transition matrix illustrates that a patient who leaves
State O has 1.1 times chance (o progress to State 1.
Simitarly, a patient who leaves State T has 3.9 times
greater chance to regress to State 0. Furthermore, the
refative risk of proceeding from State 1 to absorbing
compared to that of State 0 is { .33, which indicates
that increases in PSA level are strongly associated
with increase in the risk of failure.

Table 3.
EM Estimates and Log Likelihood for the Prosiate
Carcinoma Data

60 0.0612 0.0548 24658 0.6214
90 006i2  0.0548 24658 0.6214

{ter means Iteration and Init means Initial,

The value of the log-likelikood is -155.709.
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